Search results
Results From The WOW.Com Content Network
RLC circuits have many applications as oscillator circuits. Radio receivers and television sets use them for tuning to select a narrow frequency range from ambient radio waves. In this role, the circuit is often referred to as a tuned circuit. An RLC circuit can be used as a band-pass filter, band-stop filter, low-pass filter or high-pass ...
English: Bode magnitude plot for the voltage across different elements of an RLC series circuit. Natural frequency = 1 rad/s, damping ratio = 0.4 Natural frequency = 1 rad/s, damping ratio = 0.4 Date
Date/Time Thumbnail Dimensions User Comment; current: 16:59, 16 September 2023: 1,445 × 1,063 (89 KB): Em3rgent0rdr: labeled frequency regions by dominant component
Group delay largely frequency-dependent; Here is an image showing the gain of a discrete-time Butterworth filter next to other common filter types. All of these filters are fifth-order. The Butterworth filter rolls off more slowly around the cutoff frequency than the Chebyshev filter or the Elliptic filter, but without ripple.
The Smith chart (sometimes also called Smith diagram, Mizuhashi chart (水橋チャート), Mizuhashi–Smith chart (水橋スミスチャート), [1] [2] [3] Volpert–Smith chart (Диаграмма Вольперта—Смита) [4] [5] or Mizuhashi–Volpert–Smith chart), is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio ...
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
The cutoff frequency is the critical frequency between propagation and attenuation, which corresponds to the frequency at which the longitudinal wavenumber is zero. It is given by ω c = c ( n π a ) 2 + ( m π b ) 2 {\displaystyle \omega _{c}=c{\sqrt {\left({\frac {n\pi }{a}}\right)^{2}+\left({\frac {m\pi }{b}}\right)^{2}}}} The wave equations ...
The frequency response is below, showing a Chebyshev 1dB equi-ripple pass band response for < <, cutoff attenuation of -1dB at the pass band edges, -60dB / decade attenuation toward =, -20dB / decade attenuation toward =, and Chebyshev style steepened slopes near the pass band edges.