Search results
Results From The WOW.Com Content Network
The rotational axis of Earth, for example, is the imaginary line that passes through both the North Pole and South Pole, whereas the Earth's orbital axis is the line perpendicular to the imaginary plane through which the Earth moves as it revolves around the Sun; the Earth's obliquity or axial tilt is the angle between these two lines.
The movement of daylight between the northern and southern hemispheres happens because of the axial tilt of Earth. The imaginary line around which Earth spins, which goes between the North Pole and South Pole, is tilted about 23° from the oval that describes its orbit around the Sun. Earth always points in the same direction as it moves around ...
Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.
In general, an imaginary line is usually any sort of geometric line (more generally, curves) that has only an abstract definition and does not physically exist. They are often used to properly identify places on a map. Some outside geography do exist. A centerline is a nautical term for a line down the center of a vessel lengthwise.
A satellite ground track may be thought of as a path along the Earth's surface that traces the movement of an imaginary line between the satellite and the center of the Earth. In other words, the ground track is the set of points at which the satellite will pass directly overhead, or cross the zenith, in the frame of reference of a ground observer.
Download QR code; Print/export Download as PDF; Printable version; In other projects ... On Earth, it is an imaginary line located at 0 degrees latitude. 0° ...
Draw an imaginary line from γ Crucis to α Crucis—the two stars at the extreme ends of the long axis of the cross—and follow this line through the sky. Either go four-and-a-half times the distance of the long axis in the direction the narrow end of the cross points, or join the two pointer stars with a line, divide this line in half, then ...
The image shows the relations between Earth's axial tilt (or obliquity), rotation axis, and orbital plane. The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. By extension, it is also a plane of reference in the equatorial coordinate system.