Search results
Results From The WOW.Com Content Network
The geometric mean is more appropriate than the arithmetic mean for describing proportional growth, both exponential growth (constant proportional growth) and varying growth; in business the geometric mean of growth rates is known as the compound annual growth rate (CAGR). The geometric mean of growth over periods yields the equivalent constant ...
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential , trigonometric functions , and other special functions , as well as some ...
A geometric construction of the quadratic mean and the Pythagorean means (of two numbers a and b). Harmonic mean denoted by H, geometric by G, arithmetic by A and quadratic mean (also known as root mean square) denoted by Q. Comparison of the arithmetic, geometric and harmonic means of a pair of numbers.
In mathematics, generalized means (or power mean or Hölder mean from Otto Hölder) [1] are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means ( arithmetic , geometric , and harmonic means ).
In mathematics and statistics, the quasi-arithmetic mean or generalised f-mean or Kolmogorov-Nagumo-de Finetti mean [1] is one generalisation of the more familiar means such as the arithmetic mean and the geometric mean, using a function . It is also called Kolmogorov mean after Soviet mathematician Andrey Kolmogorov.
A viral titer is the lowest concentration of a virus that still infects cells. To determine the titer, several dilutions are prepared, such as 10 −1, 10 −2, 10 −3, ... 10 −8. [1] The titer of a fat is the temperature, in degrees Celsius, at which it solidifies. [4] The higher the titer, the harder the fat.