Search results
Results From The WOW.Com Content Network
The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order n – that is, a magic square which contains the numbers 1, 2, ..., n 2 – the magic constant is = +.
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.
Since each 2 × 2 subsquare sums to the magic constant, 4 × 4 pandiagonal magic squares are most-perfect magic squares. In addition, the two numbers at the opposite corners of any 3 × 3 square add up to half the magic constant. Consequently, all 4 × 4 pandiagonal magic squares that are associative must have duplicate cells.
For instance, the Lo Shu Square – the unique 3 × 3 magic square – is associative, because each pair of opposite points form a line of the square together with the center point, so the sum of the two opposite points equals the sum of a line minus the value of the center point regardless of which two opposite points are chosen. [4]
A most-perfect magic square of order n is a magic square containing the numbers 1 to n 2 with two additional properties: Each 2 × 2 subsquare sums to 2 s , where s = n 2 + 1. All pairs of integers distant n /2 along a (major) diagonal sum to s .
Some of the more well-known topics in recreational mathematics are Rubik's Cubes, magic squares, fractals, logic puzzles and mathematical chess problems, but this area of mathematics includes the aesthetics and culture of mathematics, peculiar or amusing stories and coincidences about mathematics, and the personal lives of mathematicians.
This is a list of recreational number theory topics (see number theory, recreational mathematics).Listing here is not pejorative: many famous topics in number theory have origins in challenging problems posed purely for their own sake.