Search results
Results From The WOW.Com Content Network
More generally, an impulse response is the reaction of any dynamic system in response to some external change. In both cases, the impulse response describes the reaction of the system as a function of time (or possibly as a function of some other independent variable that parameterizes the dynamic behavior of the system).
The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s).
An example response of system to sine wave forcing function. Time axis in units of the time constant τ. The response damps out to become a simple sine wave. Frequency response of system vs. frequency in units of the bandwidth f 3dB. The response is normalized to a zero frequency value of unity, and drops to 1/√2 at the bandwidth.
As in the Bucherer-Neumann experiments, the velocity and the charge-mass-ratio of beta particles of velocities up to 0.75c was measured. However, they made many improvements, including the employment of a Geiger counter. The accuracy of the experiment by which relativity was confirmed was within 1%. [7]
If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)
The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.
The explicit term on the right-hand side is the leading order term of a Volterra expansion for the full nonlinear response. If the system in question is highly non-linear, higher order terms in the expansion, denoted by the dots, become important and the signal transducer cannot adequately be described just by its linear response function.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.