Search results
Results From The WOW.Com Content Network
An image scaled with nearest-neighbor scaling (left) and 2×SaI scaling (right) In computer graphics and digital imaging, image scaling refers to the resizing of a digital image. In video technology, the magnification of digital material is known as upscaling or resolution enhancement.
The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest-neighbor interpolation. Other scaling methods below are better at preserving smooth contours in the image.
Original image to be made narrower Scaling is undesirable because the castle is distorted. Cropping is undesirable because part of the castle is removed. Seam carving. Seam carving (or liquid rescaling) is an algorithm for content-aware image resizing, developed by Shai Avidan, of Mitsubishi Electric Research Laboratories (MERL), and Ariel Shamir, of the Interdisciplinary Center and MERL.
In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue. In contrast to bilinear interpolation, which only takes 4 pixels (2×2) into account, bicubic interpolation considers 16 pixels (4×4).
The complex wavelet transform variant of the SSIM (CW-SSIM) is designed to deal with issues of image scaling, translation and rotation. Instead of giving low scores to images with such conditions, the CW-SSIM takes advantage of the complex wavelet transform and therefore yields higher scores to said images. The CW-SSIM is defined as follows:
Within an image link, the options are as follows: thumb – displays the image as a framed thumbnail at the user's default size; frameless – displays the image as an unframed at the user's default size; upright – scales the image to approximately 75% of the user's default size (25% smaller)
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s, at Bell Laboratories, the Jet Propulsion Laboratory, Massachusetts Institute of Technology, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone ...
By smoothing the image, they help to minimize the impact of noise before applying methods like the Sobel or Canny edge detectors. Image Resizing: In image resizing tasks, Gaussian filters can prevent aliasing artifacts. Smoothing the image before downsampling ensures that the resulting image maintains better quality and visual fidelity. [13]