Search results
Results From The WOW.Com Content Network
The point of the change was not to make it easier to read but easier to understand - the typical C version uses an in-place partition algorithm that is, while simple, not as obvious as the out-of-place partition algorithm used in some functional implementaions and the first pseudocode example. The language/syntax is largely irrelevent, as long ...
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 [1] and published in 1961. [2] It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. [3]
Stable sort algorithms sort equal elements in the same order that they appear in the input. For example, in the card sorting example to the right, the cards are being sorted by their rank, and their suit is being ignored. This allows the possibility of multiple different correctly sorted versions of the original list.
The sort algorithms section should not include a reference to Standard Template Library as an example of an in place merge sort. A specific implementation of STL's stable_sort() might use an in-place merge sort, but stable_sort() is not defined that way. Rcgldr 02:06, 9 December 2011 (UTC)
qsort is a C standard library function that implements a sorting algorithm for arrays of arbitrary objects according to a user-provided comparison function. It is named after the "quicker sort" algorithm [1] (a quicksort variant due to R. S. Scowen), which was originally used to implement it in the Unix C library, although the C standard does not require it to implement quicksort.
Merge sort is more efficient than quicksort for some types of lists if the data to be sorted can only be efficiently accessed sequentially, and is thus popular in languages such as Lisp, where sequentially accessed data structures are very common. Unlike some (efficient) implementations of quicksort, merge sort is a stable sort.
Stable sorting algorithms maintain the relative order of records with equal keys (i.e. values). That is, a sorting algorithm is stable if whenever there are two records R and S with the same key and with R appearing before S in the original list, R will appear before S in the sorted list.
For example, bubble sort is () on a list that is already sorted, while quicksort would still perform its entire () sorting process. While any sorting algorithm can be made O ( n ) {\displaystyle O(n)} on a presorted list simply by checking the list before the algorithm runs, improved performance on almost-sorted lists is harder to replicate.