Search results
Results From The WOW.Com Content Network
Continental crust is a tertiary crust, formed at subduction zones through recycling of subducted secondary (oceanic) crust. [17] The average age of Earth's current continental crust has been estimated to be about 2.0 billion years. [20] Most crustal rocks formed before 2.5 billion years ago are located in cratons.
Earth's crust and mantle, Mohorovičić discontinuity between bottom of crust and solid uppermost mantle. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust].
In geology, the crust is the outermost solid shell of a planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be defined based on its phase (solid crust vs. liquid mantle).
The thickness of Earth's crust (km). The continental crust consists of various layers, with a bulk composition that is intermediate (SiO 2 wt% = 60.6). [5] The average density of the continental crust is about, 2.83 g/cm 3 (0.102 lb/cu in), [6] less dense than the ultramafic material that makes up the mantle, which has a density of around 3.3 g/cm 3 (0.12 lb/cu in).
The tectonic plates of the lithosphere on Earth Earth cutaway from center to surface, the lithosphere comprising the crust and lithospheric mantle (detail not to scale). A lithosphere (from Ancient Greek λίθος (líthos) 'rocky' and σφαίρα (sphaíra) 'sphere') is the rigid, [1] outermost rocky shell of a terrestrial planet or natural satellite.
The stated areas of study of the Kola Superdeep Borehole were the deep structure of the Baltic Shield, seismic discontinuities and the thermal regime in the Earth's crust, the physical and chemical composition of the deep crust and the transition from upper to lower crust, lithospheric geophysics, and to create and develop technologies for deep ...
Beneath oceanic crust, the LAB ranges anywhere from 50 to 140 km in depth, except close to mid-ocean ridges where the LAB is no deeper than the depth of the new crust being created. [10] Seismic evidence shows that oceanic plates do thicken with age. This suggests that the LAB underneath oceanic lithosphere also deepens with plate age.
Variation of strength with depth in continental crust and changes in dominant deformation mechanisms and fault rocks in a conceptual vertical fault zone.. The brittle-ductile transition zone (hereafter the "transition zone") is the zone of the Earth's crust that marks the transition from the upper, more brittle crust to the lower, more ductile crust. [1]