Search results
Results From The WOW.Com Content Network
Adiabatic demagnetization: The substance is returned to another adiabatic (insulated) condition so the total entropy remains constant. However, this time the magnetic field is decreased, the thermal energy causes the magnetic moments to overcome the field, and thus the sample cools, i.e., an adiabatic temperature change.
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) ' impassable ') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.
Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. Notable examples are listed below.
In thermodynamics, an adiabatic process is a change that occurs without heat flow; it may be slow or fast. A reversible adiabatic process is an adiabatic process that occurs slowly compared to the time to reach equilibrium. In a reversible adiabatic process, the system is in equilibrium at all stages and the entropy is constant. In the 1st half ...
An example of an order parameter for crystallization is "bond orientational order" describing the development of preferred directions (the crystallographic axes) in space. For many systems, phases with more structural (e.g. crystalline) order exhibit less entropy than fluid phases under the same thermodynamic conditions.
In quantum mechanics, the Berry phase arises in a cyclic adiabatic evolution. The quantum adiabatic theorem applies to a system whose Hamiltonian H ( R ) {\displaystyle H(\mathbf {R} )} depends on a (vector) parameter R {\displaystyle \mathbf {R} } that varies with time t {\displaystyle t} .
Demagnetization is the reduction or elimination of magnetization. [7] One way to do this is to heat the object above its Curie temperature, where thermal fluctuations have enough energy to overcome exchange interactions, the source of ferromagnetic order, and destroy that order. Another way is to pull it out of an electric coil with alternating ...
Irreversible adiabatic process: If the cylinder is a perfect insulator, the initial top-left state cannot be reached anymore after it is changed to the one on the top-right. Instead, the state on the bottom left is assumed when going back to the original pressure because energy is converted into heat.