Ad
related to: reactor pressure vessel head design for sale near
Search results
Results From The WOW.Com Content Network
A reactor vessel head for a pressurized water reactor. This structure is attached to the top of the reactor vessel body. It contains penetrations to allow the control rod driving mechanism to attach to the control rods in the fuel assembly. The coolant level measurement probe also enters the vessel through the reactor vessel head.
The reactor head under inspection. Unit One is an 879 MWe pressurized water reactor supplied by Babcock & Wilcox. The reactor was shut down from 2002 until early 2004 for safety repairs and upgrades. In 2012 the reactor supplied 7101.700 GWh of electricity. [14] In 1973, two more reactors were also ordered from Babcock & Wilcox.
Commonly used for ASME pressure vessels, these torispherical heads have a crown radius equal to the outside diameter of the head (=), and a knuckle radius equal to 6% of the outside diameter (=). The ASME design code does not allow the knuckle radius to be any less than 6% of the outside diameter.
This requires high strength piping and a heavy pressure vessel and hence increases construction costs. The higher pressure can increase the consequences of a loss-of-coolant accident. [23] The reactor pressure vessel is manufactured from ductile steel but, as the plant is operated, neutron flux from the reactor causes this steel to become less ...
BWR designs operate constantly at about half the primary system pressure of PWR designs while producing the same quantity and quality of steam in a compact system: 1020 psi (7 MPa) reactor vessel pressure, and 288 °C temperature for BWR which is lower than 2240 psi (14.4 MPa) and 326 °C for PWR.
The HTGR design was safer than typical boiling water designs of the time having steel-reinforced, pre-stressed concrete containment dome structures. It only needed a steel-frame containment structure, while the reactor core was partially contained within a prestressed concrete reactor pressure vessel (PCRV).
Computer generated view of an EPR power station Reactor pressure vessel of the EPR. The EPR is a Generation III+ pressurised water reactor design. It has been designed and developed mainly by Framatome (part of Areva between 2001 and 2017) and Électricité de France (EDF) in France, and by Siemens in Germany. [1]
Control rods often stand vertically within the core. In PWRs they are inserted from above, with the control rod drive mechanisms mounted on the reactor pressure vessel head. In BWRs, due to the necessity of a steam dryer above the core, this design requires insertion of the control rods from beneath.