When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    For Lebesgue measurable functions, the theorem can be stated in the following form: [6] Theorem — Let U be a measurable subset of R n and φ : U → R n an injective function , and suppose for every x in U there exists φ ′( x ) in R n , n such that φ ( y ) = φ ( x ) + φ′ ( x )( y − x ) + o (‖ y − x ‖) as y → x (here o is ...

  4. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The Lebesgue integral describes better how and when it is possible to take limits under the integral sign (via the monotone convergence theorem and dominated convergence theorem). While the Riemann integral considers the area under a curve as made out of vertical rectangles, the Lebesgue definition considers horizontal slabs that are not ...

  5. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/.../Tangent_half-angle_substitution

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  7. Lebesgue–Stieltjes integration - Wikipedia

    en.wikipedia.org/wiki/Lebesgue–Stieltjes...

    The Lebesgue–Stieltjes integral ()is defined when : [,] is Borel-measurable and bounded and : [,] is of bounded variation in [a, b] and right-continuous, or when f is non-negative and g is monotone and right-continuous.

  8. Lebesgue differentiation theorem - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_differentiation...

    The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving the estimate for the Hardy–Littlewood maximal function.. The theorem also holds if balls are replaced, in the definition of the derivative, by families of sets with diameter tending to zero satisfying the Lebesgue's regularity condition, defined above as family of sets with bounded eccentricity.

  9. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .