When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    Generalizations of the Farkas' lemma are about the solvability theorem for convex inequalities, [4] i.e., infinite system of linear inequalities. Farkas' lemma belongs to a class of statements called "theorems of the alternative": a theorem stating that exactly one of two systems has a solution. [5]

  3. Quadratic classifier - Wikipedia

    en.wikipedia.org/wiki/Quadratic_classifier

    Statistical classification considers a set of vectors of observations x of an object or event, each of which has a known type y. This set is referred to as the training set. The problem is then to determine, for a given new observation vector, what the best class should be.

  4. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    A linear programming problem seeks to optimize (find a maximum or minimum value) a function (called the objective function) subject to a number of constraints on the variables which, in general, are linear inequalities. [6] The list of constraints is a system of linear inequalities.

  5. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    A diagram showing a perceptron updating its linear boundary as more training examples are added Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same ...

  6. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.

  7. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5] A linear system may behave in any one of three possible ways: The system has infinitely many solutions.

  9. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Given a linear constraints system, if the -th inequality is satisfied for any solution of all other inequalities, then it is redundant. Similarly, STIs refers to inequalities that are implied by the non-negativity of information theoretic measures and basic identities they satisfy.