When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). [3] This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the ...

  3. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    This example neglects the effects of tire sliding, suspension dipping, real deflection of all ideally rigid mechanisms, etc. Another example of significant jerk, analogous to the first example, is the cutting of a rope with a particle on its end. Assume the particle is oscillating in a circular path with non-zero centripetal acceleration.

  4. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force (F d) and the buoyancy is equal to the downward force of gravity (F G) acting on the object. Since the net force on the object is zero, the object has zero acceleration.

  5. Accelerating expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Accelerating_expansion_of...

    Different theories of dark energy suggest different values of w, with w < − ⁠ 1 / 3 ⁠ for cosmic acceleration (this leads to a positive value of ä in the acceleration equation above). The simplest explanation for dark energy is that it is a cosmological constant or vacuum energy; in this case w = −1.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    A differential equation of motion, usually identified as some physical law (for example, F = ma), and applying definitions of physical quantities, is used to set up an equation to solve a kinematics problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a set of ...

  7. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    Proper-acceleration's relationships to coordinate acceleration in a specified slice of flat spacetime follow [6] from Minkowski's flat-space metric equation (c dτ) 2 = (c dt) 2 − (dx) 2. Here a single reference frame of yardsticks and synchronized clocks define map position x and map time t respectively, the traveling object's clocks define ...

  8. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    The SI unit for acceleration is metre per second squared (m⋅s −2, ). For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acceleration occurs toward the new direction ...

  9. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.