When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Galileo was the first to demonstrate and then formulate these equations. He used a ramp to study rolling balls, the ramp slowing the acceleration enough to measure the time taken for the ball to roll a known distance. [1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [note 1]

  3. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    It has precisely balanced positive kinetic energy and negative gravitational potential energy; [a] it will always be slowing down, asymptotically approaching zero speed, but never quite stop. [1] Escape velocity calculations are typically used to determine whether an object will remain in the gravitational sphere of influence of a given body.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    As the car launches from rest, there is a large positive jerk as its acceleration rapidly increases. After the launch, there is a small, sustained negative jerk as the force of air resistance increases with the car's velocity, gradually decreasing acceleration and reducing the force pressing the passenger into the seat.

  6. Accelerating expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Accelerating_expansion_of...

    Different theories of dark energy suggest different values of w, with w < − ⁠ 1 / 3 ⁠ for cosmic acceleration (this leads to a positive value of ä in the acceleration equation above). The simplest explanation for dark energy is that it is a cosmological constant or vacuum energy; in this case w = −1.

  7. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    An object moving downward faster than the terminal velocity (for example because it was thrown downwards, it fell from a thinner part of the atmosphere, or it changed shape) will slow down until it reaches the terminal velocity. Drag depends on the projected area, here represented by the object's cross-section or silhouette in a horizontal plane.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...

  9. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    This first leg takes about 2 years if the acceleration's magnitude is about 1-gee. It then accelerates downward (first slowing and then speeding up) over twice that period, followed by a 2*c/α upward deceleration to return to the original height. The coordinate acceleration (green) is significant only during the low-speed segments of this voyage.