When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The equation for (()) illustrates that the logit (i.e., log-odds or natural logarithm of the odds) is equivalent to the linear regression expression. ln {\displaystyle \ln } denotes the natural logarithm .

  3. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Suppose the odds ratio between the two is 1 : 1. Now if the option of a red bus is introduced, a person may be indifferent between a red and a blue bus, and hence may exhibit a car : blue bus : red bus odds ratio of 1 : 0.5 : 0.5, thus maintaining a 1 : 1 ratio of car : any bus while adopting a changed car : blue bus ratio of 1 : 0.5.

  4. Odds ratio - Wikipedia

    en.wikipedia.org/wiki/Odds_ratio

    An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A.

  5. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]

  6. Log5 - Wikipedia

    en.wikipedia.org/wiki/Log5

    The name Log5 is due to Bill James [1] but the method of using odds ratios in this way dates back much farther. This is in effect a logistic rating model and is therefore equivalent to the Bradley–Terry model used for paired comparisons, the Elo rating system used in chess and the Rasch model used in the analysis of categorical data. [2]

  7. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  8. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    In fact, it can be shown that the unconditional analysis of matched pair data results in an estimate of the odds ratio which is the square of the correct, conditional one. [2] In addition to tests based on logistic regression, several other tests existed before conditional logistic regression for matched data as shown in related tests. However ...

  9. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    This results in the likelihood ratio chi-square statistic being equal to 0, which is the best model fit. [2] Other possible models are the conditional equiprobability model and the mutual dependence model. [1] Each log-linear model can be represented as a log-linear equation.