When.com Web Search

  1. Ads

    related to: how to calculate the probability

Search results

  1. Results From The WOW.Com Content Network
  2. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...

  3. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.

  4. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .

  5. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  6. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Let be a discrete random variable with probability mass function depending on a parameter .Then the function = = (=),considered as a function of , is the likelihood function, given the outcome of the random variable .

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    A probability distribution is not uniquely determined by the moments E[X n] = e nμ + ⁠ 1 / 2 ⁠ n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]

  9. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    In probability theory, the joint probability distribution is the probability distribution of all possible pairs of outputs of two random variables that are defined on the same probability space. The joint distribution can just as well be considered for any given number of random variables.