Search results
Results From The WOW.Com Content Network
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
To take maps over energy and two-dimensional momentum space, either the sample is rotated in the proper direction so that the slit receives electrons from adjacent emission angles, or the electron plume is steered inside the electrostatic lens with the sample fixed. The slit width will determine the step size of the angular scans.
As long as the sum of k 1 and k 2 stay inside the first Brillouin zone (grey squares), k 3 is the sum of the former two, thus conserving phonon momentum. This process is called normal scattering (N-process). With increasing phonon momentum and thus larger wave vectors k 1 and k 2, their sum might point outside the first Brillouin zone (k' 3).
The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...
Quantum mechanics provides two fundamental examples of the duality between position and momentum, the Heisenberg uncertainty principle ΔxΔp ≥ ħ/2 stating that position and momentum cannot be simultaneously known to arbitrary precision, and the de Broglie relation p = ħk which states the momentum and wavevector of a free particle are ...
In mathematics, specifically in symplectic geometry, the momentum map (or, by false etymology, moment map [1]) is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum.
When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is angular momentum, and the counterpart of force is torque. Angular momentum is calculated with respect to a reference point ...
A forest diagram is one where all the internal lines have momentum that is completely determined by the external lines and the condition that the incoming and outgoing momentum are equal at each vertex. The contribution of these diagrams is a product of propagators, without any integration. A tree diagram is a connected forest diagram.