Ads
related to: graphing polynomials worksheet with answers printable free
Search results
Results From The WOW.Com Content Network
Important graph polynomials include: The characteristic polynomial, based on the graph's adjacency matrix. The chromatic polynomial, a polynomial whose values at integer arguments give the number of colorings of the graph with that many colors. The dichromatic polynomial, a 2-variable generalization of the chromatic polynomial
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
Later most exercises involve at least two digits. A common exercise in elementary algebra calls for factorization of polynomials. Another exercise is completing the square in a quadratic polynomial. An artificially produced word problem is a genre of exercise intended to keep mathematics relevant. Stephen Leacock described this type: [1]
Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...
The answer is "prettyprinted" by default; that is, displayed as it would be written by hand (e.g. the aforementioned + rather than x^2-4x+4). The TI-89's abilities include: Algebraic factoring of expressions, including partial fraction decomposition.
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.
Closed formulas for chromatic polynomials are known for many classes of graphs, such as forests, chordal graphs, cycles, wheels, and ladders, so these can be evaluated in polynomial time. If the graph is planar and has low branch-width (or is nonplanar but with a known branch decomposition), then it can be solved in polynomial time using ...
To work with a polynomial system whose coefficients belong to a number field, it suffices to consider this generator as a new variable and to add the equation of the generator to the equations of the system. Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers.