When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    The symmetric difference of two cycles is an Eulerian subgraph. In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph.

  4. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [1]

  5. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula can also be proved as follows: if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving v – e + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding v – e + f = 2, i. e., the Euler characteristic is 2.

  6. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    An Eulerian circuit (also called an Eulerian cycle or an Euler tour) is a closed walk that uses every edge exactly once. An Eulerian graph is a graph that has an Eulerian circuit. For an undirected graph, this means that the graph is connected and every vertex has even degree.

  7. Cycle space - Wikipedia

    en.wikipedia.org/wiki/Cycle_space

    For the cycle space, the elements of the vector space are the Eulerian subgraphs, the addition operation is symmetric differencing, multiplication by the scalar 1 is the identity operation, and multiplication by the scalar 0 takes every element to the empty graph, which forms the additive identity element for the cycle space.

  8. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    An Eulerian graph G (a connected graph in which every vertex has even degree) necessarily has an Euler tour, a closed walk passing through each edge of G exactly once. This tour corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian.

  9. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    Goal: to construct a B(2, 4) de Bruijn sequence of length 2 4 = 16 using Eulerian (n − 1 = 4 − 1 = 3) 3-D de Bruijn graph cycle. Each edge in this 3-dimensional de Bruijn graph corresponds to a sequence of four digits: the three digits that label the vertex that the edge is leaving followed by the one that labels the edge.