When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    A vertex with a large degree, also called a heavy node, results in a large diagonal entry in the Laplacian matrix dominating the matrix properties. Normalization is aimed to make the influence of such vertices more equal to that of other vertices, by dividing the entries of the Laplacian matrix by the vertex degrees.

  3. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]

  4. Calculus on finite weighted graphs - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_finite...

    Sometimes an extension of the domain of the edge weight function to is considered (with the resulting function still being called the edge weight function) by setting (,) = whenever (,). In applications each graph vertex x ∈ V {\displaystyle x\in V} usually represents a single entity in the given data, e.g., elements of a finite data set ...

  5. Discrete Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Discrete_Laplace_operator

    In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.

  6. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A vertex may exist in a graph and not belong to an edge. ... , an incidence function mapping every edge to an unordered pair of vertices ... The Laplacian matrix is a ...

  7. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    While the adjacency matrix depends on the vertex labeling, its spectrum is a graph invariant, although not a complete one. Spectral graph theory is also concerned with graph parameters that are defined via multiplicities of eigenvalues of matrices associated to the graph, such as the Colin de Verdière number .

  8. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1] This eigenvalue is greater than 0 if and only if G is a connected graph. This is a corollary to the fact that the number ...

  9. Spanning tree - Wikipedia

    en.wikipedia.org/wiki/Spanning_tree

    Specifically, to compute t(G), one constructs the Laplacian matrix of the graph, a square matrix in which the rows and columns are both indexed by the vertices of G. The entry in row i and column j is one of three values: The degree of vertex i, if i = j, −1, if vertices i and j are adjacent, or