Search results
Results From The WOW.Com Content Network
The algorithm was introduced in 1978 by the number theorist John M. Pollard, in the same paper as his better-known Pollard's rho algorithm for solving the same problem. [1] [2] Although Pollard described the application of his algorithm to the discrete logarithm problem in the multiplicative group of units modulo a prime p, it is in fact a ...
An example of such a function is the function that returns 0 for all even integers, and 1 for all odd integers. In lambda calculus, from a computational point of view, applying a fixed-point combinator to an identity function or an idempotent function typically results in non-terminating computation. For example, we obtain
The examples 1 and 2 denote different terms, differing only in where the parentheses are placed. They have different meanings: example 1 is a function definition, while example 2 is a function application. The lambda variable x is a placeholder in both examples. Here, example 1 defines a function .
Church numerals 0, 1, 2, ..., are defined as follows in the lambda calculus. Starting with 0 not applying the function at all, proceed with 1 applying the function once, 2 applying the function twice, 3 applying the function three times, etc. :
k! = k(k–1) ··· (3)(2)(1) is the factorial. The positive real number λ is equal to the expected value of X and also to its variance. [13] = = (). The Poisson distribution can be applied to systems with a large number of possible events, each of which is rare. The number of such events that occur during a fixed time interval is ...
If-then-else flow diagram A nested if–then–else flow diagram. In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language constructs that perform different computations or actions or return different values depending on the value of a Boolean expression, called a condition.
Although Goodman and Kruskal's lambda is a simple way to assess the association between variables, it yields a value of 0 (no association) whenever two variables are in accord—that is, when the modal category is the same for all values of the independent variable, even if the modal frequencies or percentages vary. As an example, consider the ...
Dana Scott's LCF language [1] was a stage in the evolution of lambda calculus into modern functional languages. This language introduced the let expression, which has appeared in most functional languages since that time. The languages Scheme, [2] ML, and more recently Haskell [3] have inherited let expressions from LCF.