Search results
Results From The WOW.Com Content Network
This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n for the root x of the function f (blue curve) If the tangent line to the curve f(x) at x = x n intercepts the x-axis at x n+1 then the slope is
The Taylor series of any polynomial is the polynomial itself.. The Maclaurin series of 1 / 1 − x is the geometric series + + + +. So, by substituting x for 1 − x, the Taylor series of 1 / x at a = 1 is
A radial function is a function : [,).When paired with a norm on a vector space ‖ ‖: [,), a function of the form = (‖ ‖) is said to be a radial kernel centered at .A radial function and the associated radial kernels are said to be radial basis functions if, for any finite set of nodes {} =, all of the following conditions are true:
In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and ...
A golden rectangle—that is, a rectangle with an aspect ratio of —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets , in some cases based on dubious fits to data. [ 8 ]
Here + is the RK4 approximation of (+), and the next value (+) is determined by the present value plus the weighted average of four increments, where each increment is the product of the size of the interval, h, and an estimated slope specified by function f on the right-hand side of the differential equation.
The partial sums of: = = are very useful in the approximation of various functions and in the solution of differential equations (see spectral method). Two common methods for determining the coefficients a n are through the use of the inner product as in Galerkin's method and through the use of collocation which is related to interpolation .
Therefore, the linear approximation to natural tetration is the only solution of the equation () = (>) and () = which is convex on (−1, +∞). All other sufficiently-differentiable solutions must have an inflection point on the interval (−1, 0) .