Ad
related to: difference between timeline and universe definition physics free
Search results
Results From The WOW.Com Content Network
In inflationary models of cosmology, times before the end of inflation (roughly 10 −32 seconds after the Big Bang) do not follow the same timeline as in traditional Big Bang cosmology. Models that aim to describe the universe and physics during the Planck epoch are generally speculative and fall under the umbrella of "New Physics".
A world line is a special type of curve in spacetime. Below an equivalent definition will be explained: A world line is either a time-like or a null curve in spacetime. Each point of a world line is an event that can be labeled with the time and the spatial position of the object at that time.
An event in the universe is caused by the set of events in its causal past. An event contributes to the occurrence of events in its causal future. Upon choosing a frame of reference, one can assign coordinates to the event: three spatial coordinates x → = ( x , y , z ) {\displaystyle {\vec {x}}=(x,y,z)} to describe the location and one time ...
The physical universe is defined as all of space and time [a] (collectively referred to as spacetime) and their contents. [10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.
The laws of physics transform from one inertial frame to another according to Galilean relativity, leading to the following objections to absolute space, as outlined by Milutin Blagojević: [10] The existence of absolute space contradicts the internal logic of classical mechanics since, according to Galilean principle of relativity, none of the ...
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. [1] [2] As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space—what they are, rather than where they are", [3] which is studied ...
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.
One of the fundamental assumptions of the steady-state model is the cosmological principle, which follows from the perfect cosmological principle and which states that our observational location in the universe is not unusual or special; on a large-enough scale, the universe looks the same in all directions and from every location (homogeneity ...