Search results
Results From The WOW.Com Content Network
Lightning as an example of plasma present at Earth's surface: Typically, lightning discharges 30 kiloamperes at up to 100 megavolts, and emits radio waves, light, X- and even gamma rays. [36] Plasma temperatures can approach 30000 K and electron densities may exceed 10 24 m −3.
An example of beta globulin found in blood plasma includes low-density lipoproteins (LDL) which are responsible for transporting fat to the cells for steroid and membrane synthesis. [15] Gamma globulin, better known as immunoglobulins, are produced by plasma B cells, and provides the human body with a defense system against invading pathogens ...
The Sun's corona, some types of flame, and stars are all examples of illuminated matter in the plasma state. Plasma is by far the most abundant of the four fundamental states, as 99% of all ordinary matter in the universe is plasma, as it composes all stars. [4] [5] [6]
In common temperatures and pressures, atoms form the three classical states of matter: solid, liquid and gas. Complex molecules can also form various mesophases such as liquid crystals, which are intermediate between the liquid and solid phases. At high temperatures or strong electromagnetic fields atoms become ionized, forming plasma.
Interstitial fluid is essentially comparable to plasma. The interstitial fluid and plasma make up about 97% of the ECF, and a small percentage of this is lymph. Interstitial fluid is the body fluid between blood vessels and cells, [8] containing nutrients from capillaries by diffusion and holding waste products discharged by cells due to ...
Microplasma is a subdivision of plasma in which the dimensions of the plasma can range between tens, hundreds, or even thousands of micrometers in size. The majority of microplasmas that are employed in commercial applications are cold plasmas. In a cold plasma, electrons have much higher energy than the accompanying ions and neutrals.
Plasma proteins, sometimes referred to as blood proteins, are proteins present in blood plasma. They serve many different functions, including transport of lipids, hormones, vitamins and minerals in activity and functioning of the immune system. Other blood proteins act as enzymes, complement components, protease inhibitors or kinin precursors.
The various modes can also be classified according to whether they propagate in an unmagnetized plasma or parallel, perpendicular, or oblique to the stationary magnetic field. Finally, for perpendicular electromagnetic electron waves, the perturbed electric field can be parallel or perpendicular to the stationary magnetic field.