Search results
Results From The WOW.Com Content Network
The IUPAC definition [1] of relative atomic mass is: An atomic weight (relative atomic mass) of an element from a specified source is the ratio of the average mass per atom of the element to 1/12 of the mass of an atom of 12 C. The definition deliberately specifies "An atomic weight ...", as an element will have different relative atomic masses ...
As such, relative atomic mass and standard atomic weight often differ numerically from the relative isotopic mass. The atomic mass (relative isotopic mass) is defined as the mass of a single atom, which can only be one isotope (nuclide) at a time, and is not an abundance-weighted average, as in the case of relative atomic mass/atomic weight ...
The mass number should also not be confused with the standard atomic weight (also called atomic weight) of an element, which is the ratio of the average atomic mass of the different isotopes of that element (weighted by abundance) to the atomic mass constant. [9] The atomic weight is a mass ratio, while the mass number is a counted number (and ...
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.
Atomic weight and relative atomic mass are synonyms. The standard atomic weight is a special value of the relative atomic mass. It is defined as the "recommended values" of relative atomic masses of sources in the local environment of the Earth's crust and atmosphere as determined by the IUPAC Commission on Atomic Weights and Isotopic ...
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from planet to planet, and even from place to place on the Earth, but remains relatively constant in time (on a short-term scale).