When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  3. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution.

  4. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables. If the variables are independent, Pearson's correlation coefficient is 0. However, because the correlation coefficient detects only linear dependencies between two variables, the converse is not necessarily true.

  5. Bivariate data - Wikipedia

    en.wikipedia.org/wiki/Bivariate_data

    Correlations between the two variables are determined as strong or weak correlations and are rated on a scale of –1 to 1, where 1 is a perfect direct correlation, –1 is a perfect inverse correlation, and 0 is no correlation. In the case of long legs and long strides, there would be a strong direct correlation. [6]

  6. JASP - Wikipedia

    en.wikipedia.org/wiki/JASP

    T-Tests: Evaluate the difference between two means. ANOVA: Evaluate the difference between multiple means. Mixed Models: Evaluate the difference between multiple means with random effects. Regression: Evaluate the association between variables. Frequencies: Analyses for count data. Factor: Explore hidden structure in the data.

  7. Coefficient of multiple correlation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_multiple...

    In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable's values and the best predictions that can be computed linearly from the predictive variables. [1]

  8. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X , we have the covariance of a variable with itself (i.e. σ X X {\displaystyle \sigma _{XX}} ), which is called the variance and is more commonly denoted as σ X 2 , {\displaystyle ...

  9. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    Intuitively, the Spearman correlation between two variables will be high when observations have a similar (or identical for a correlation of 1) rank (i.e. relative position label of the observations within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations have a dissimilar (or fully opposed for a ...