Search results
Results From The WOW.Com Content Network
Jet engine performance has been phrased as 'the end product that a jet engine company sells' [1] and, as such, criteria include thrust, (specific) fuel consumption, time between overhauls, power-to-weight ratio. Some major factors affecting efficiency include the engines overall pressure ratio, it's bypass ratio and the turbine inlet ...
Thrust-to-weight ratio is a dimensionless ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle propelled by such an engine that is an indicator of the performance of the engine or vehicle.
Jet or rocket engine Mass Thrust Thrust-to-weight ratio (kg) (lb) (kN) (lbf) RD-0410 nuclear rocket engine [1] [2] 2,000 4,400 35.2 7,900 1.8 J58 jet engine (SR-71 ...
The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8.
The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. [1] A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.
The thrust-to-weight ratio of jet engines with similar configurations varies with scale, but is mostly a function of engine construction technology. For a given engine, the lighter the engine, the better the thrust-to-weight is, the less fuel is used to compensate for drag due to the lift needed to carry the engine weight, or to accelerate the ...
The higher thrust GE90-110B1 and -115B engines, in combination with the second-generation 777 variants -200LR and -300ER, were primary reasons for 777 sales being greater than those of the rival A330/340 series. [19] Using two engines produces a typical operating cost advantage of around 8–9% for the -300ER over the A340-600. [20]
The engine pressure ratio (EPR) is the total pressure ratio across a jet engine, measured as the ratio of the total pressure at the exit of the propelling nozzle divided by the total pressure at the entry to the compressor. [1] Jet engines use either EPR or compressor/fan RPM as an indicator of thrust. [2]