Search results
Results From The WOW.Com Content Network
where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...
Illustration of a unit circle. The variable t is an angle measure. Animation of the act of unrolling the circumference of a unit circle, a circle with radius of 1. Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1]
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
Because the radius of the circle is constant, the radial component of the velocity is zero. The unit vector u ^ R ( t ) {\displaystyle {\hat {\mathbf {u} }}_{R}(t)} has a time-invariant magnitude of unity, so as time varies its tip always lies on a circle of unit radius, with an angle θ the same as the angle of r ( t ) {\displaystyle \mathbf ...
Hence, given the radius, r, center, P c, a point on the circle, P 0 and a unit normal of the plane containing the circle, ^, one parametric equation of the circle starting from the point P 0 and proceeding in a positively oriented (i.e., right-handed) sense about ^ is the following:
If one of the four curvatures is considered to be a variable, and the rest to be constants, this is a quadratic equation. To find the radius of a fourth circle tangent to three given kissing circles, the quadratic equation can be solved as [13] [26]