Search results
Results From The WOW.Com Content Network
Ultraviolet astronomy is the observation of electromagnetic radiation at ultraviolet wavelengths between approximately 10 and 320 nanometres; shorter wavelengths—higher energy photons—are studied by X-ray astronomy and gamma-ray astronomy. [1] Ultraviolet light is not visible to the human eye. [2] Most of the light at these wavelengths is ...
Sunburn effect (as measured by the UV index) is the product of the sunlight spectrum (radiation intensity) and the erythemal action spectrum (skin sensitivity) across the range of UV wavelengths. Sunburn production per milliwatt of radiation intensity is increased by nearly a factor of 100 between the near UVB wavelengths of 315–295 nm.
Light at these wavelengths is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space. [118] Objects emitting ultraviolet radiation include the Sun, other stars and galaxies. [119]
[citation needed] This band of significant radiation power can be divided into five regions in increasing order of wavelengths: [20] Ultraviolet C or (UVC) range, which spans a range of 100 to 280 nm. The term ultraviolet refers to the fact that the radiation is at higher frequency than violet light (and, hence, also invisible to the human eye ...
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
[1] [2] Sunlight mostly reaches the ground through the optical atmospheric window; [3] [4] the Sun is particularly active in most of this range (44% of the radiation emitted by the Sun falls within the visible spectrum and 49% falls within the infrared spectrum).
The human eye can perceive light with wavelengths between roughly 350 (violet) and 700 (red) nanometres. Ultraviolet light has wavelengths between roughly 10 nm and 350 nm. UV light can be harmful to human beings and is strongly absorbed by the ozone layer. This makes it impossible to observe UV emission from astronomical objects from the ground.
There is little radiation flux (in terms of W/m 2) to the Earth's surface below 0.2μm or above 3.0μm, although photon flux remains significant as far as 6.0μm, compared to shorter wavelength fluxes. UV-C radiation spans from 0.1μm to .28μm, UV-B from 0.28μm to 0.315μm, UV-A from 0.315μm to 0.4μm, the visible spectrum from 0.4μm to 0 ...