Search results
Results From The WOW.Com Content Network
In electrical engineering, an equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit. Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis . [ 1 ]
The total resistance of this parallel arrangement is expressed by the following equation: 1/R total = 1/R a + 1/R b + ... + 1/R n. R a, R b, and R n are the resistances of the renal, hepatic, and other arteries respectively. The total resistance is less than the resistance of any of the individual arteries. [3]
The first rendering in figure 1.8 is the traditional depiction of a bridge circuit. The second rendering clearly shows the equivalence between the bridge topology and a topology derived by series and parallel combinations. The third rendering is more commonly known as lattice topology. It is not so obvious that this is topologically equivalent.
The equivalent resistance R th is the resistance that the circuit between terminals A and B would have if all ideal voltage sources in the circuit were replaced by a short circuit and all ideal current sources were replaced by an open circuit (i.e., the sources are set to provide zero voltages and currents).
The Smith chart (sometimes also called Smith diagram, Mizuhashi chart (水橋チャート), Mizuhashi–Smith chart (水橋スミスチャート), [1] [2] [3] Volpert–Smith chart (Диаграмма Вольперта—Смита) [4] [5] or Mizuhashi–Volpert–Smith chart), is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio ...
The DC wire resistance is an important parameter in transformer and general inductor design because it contributes to the impedance of the component, and current flowing through that resistance is dissipated as waste heat, and energy is lost from the circuit. It can be modeled as a resistor in series with the inductor, often leading to the DC ...
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...
The mathematical relationship between voltage, current, and resistance. one-line diagram A simplified schematic diagram of a power system. on-premises wiring Telecommunications wiring owned by the customer. open-circuit test A test, of a transformer or other device, with no load connected. open-circuit voltage