Search results
Results From The WOW.Com Content Network
1952 Shell Oil film showing the development of the diesel engine from 1877. The diesel engine, named after the German engineer Rudolf Diesel, is an internal combustion engine in which ignition of diesel fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression; thus, the diesel engine is called a compression-ignition engine (CI engine).
However, a real diesel engine will be more efficient overall since it will have the ability to operate at higher compression ratios. If a petrol engine were to have the same compression ratio, then knocking (self-ignition) would occur and this would severely reduce the efficiency, whereas in a diesel engine, the self ignition is the desired ...
Diesel engines take in air only, and shortly before peak compression, spray a small quantity of diesel fuel into the cylinder via a fuel injector that allows the fuel to instantly ignite. HCCI type engines take in both air and fuel, but continue to rely on an unaided auto-combustion process, due to higher pressures and temperature.
The first mobile application of the two-stroke diesel engine was with the diesel streamliners of the mid-1930s. Continued development work resulted in improved two-stroke diesels for locomotive and marine applications in the late 1930s. This work laid the foundation for the dieselisation of railroads in the 1940s and 1950s in the United States ...
Four-stroke cycle used in gasoline/petrol engines: intake (1), compression (2), power (3), and exhaust (4). The right blue side is the intake port and the left brown side is the exhaust port. The cylinder wall is a thin sleeve surrounding the piston head which creates a space for the combustion of fuel and the genesis of mechanical energy.
Mechanical heat engines convert heat into work via various thermodynamic processes. The internal combustion engine is perhaps the most common example of a mechanical heat engine in which heat from the combustion of a fuel causes rapid pressurisation of the gaseous combustion products in the combustion chamber, causing them to expand and drive a ...
This is how the combination of an engine, fuel, and air makes your car move, explained in plain English, in case you're not an engineer.
Diesel engines are typically well suited to turbocharging due to two factors: A "lean" air–fuel ratio, caused when the turbocharger supplies excess air into the engine, is not a problem for diesel engines, because the torque control is dependent on the mass of fuel that is injected into the combustion chamber (i.e. air-fuel ratio), rather than the quantity of the air-fuel mixture.