When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Illustrative model of greenhouse effect on climate change

    en.wikipedia.org/wiki/Illustrative_model_of...

    Earth constantly absorbs energy from sunlight and emits thermal radiation as infrared light. In the long run, Earth radiates the same amount of energy per second as it absorbs, because the amount of thermal radiation emitted depends upon temperature: If Earth absorbs more energy per second than it radiates, Earth heats up and the thermal radiation will increase, until balance is restored; if ...

  3. File:Earth Energy Budget with GHE.svg - Wikipedia

    en.wikipedia.org/wiki/File:Earth_Energy_Budget...

    This is why the numbers in the heat flow and energy flow diagrams on the NASA webpage Climate and Earth’s Energy Budget are different. The heat flow numbers are what you are left with after you cancel out opposing radiation energy flows. Q: I've seen the 342 W/m 2 downward thermal radiation flux described as being the greenhouse effect.

  4. Earth's internal heat budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_internal_heat_budget

    Earth's internal heat budget is fundamental to the thermal history of the Earth. The flow of heat from Earth's interior to the surface is estimated at 47±2 terawatts (TW) [1] and comes from two main sources in roughly equal amounts: the radiogenic heat produced by the radioactive decay of isotopes in the mantle and crust, and the primordial ...

  5. Geothermal gradient - Wikipedia

    en.wikipedia.org/wiki/Geothermal_gradient

    Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...

  6. Atmospheric thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_thermodynamics

    Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...

  7. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    The geothermal heat flow from the Earth's interior is estimated to be 47 terawatts (TW) [12] and split approximately equally between radiogenic heat and heat left over from the Earth's formation. This corresponds to an average flux of 0.087 W/m 2 and represents only 0.027% of Earth's total energy budget at the surface, being dwarfed by the 173 ...

  8. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    By assuming the energy amount due to solar radiation it is possible to predict the 2 m (6.6 ft) temperature, humidity, and wind during the day, the development of the boundary layer of the atmosphere, the occurrence and development of clouds and the conditions for soaring flight during the day.

  9. General circulation model - Wikipedia

    en.wikipedia.org/wiki/General_circulation_model

    Atmospheric GCMs (AGCMs) model the atmosphere and impose sea surface temperatures as boundary conditions. Coupled atmosphere-ocean GCMs (AOGCMs, e.g. HadCM3, EdGCM, GFDL CM2.X, ARPEGE-Climat [37]) combine the two models. Models range in complexity: A simple radiant heat transfer model treats the earth as a single point and averages outgoing energy