Ads
related to: subring of integers example questions and answers printable
Search results
Results From The WOW.Com Content Network
A special kind of subring of a ring R is the subring generated by a subset X, which is defined as the intersection of all subrings of R containing X. [3] The subring generated by X is also the set of all linear combinations with integer coefficients of elements of X , including the additive identity ("empty combination") and multiplicative ...
An intersection of subrings is a subring. Given a subset E of R, the smallest subring of R containing E is the intersection of all subrings of R containing E, and it is called the subring generated by E. For a ring R, the smallest subring of R is called the characteristic subring of R. It can be generated through addition of copies of 1 and −1.
The question of when this happens is rather subtle: for example, for the localization of k[x, y, z]/(x 2 + y 3 + z 5) at the prime ideal (x, y, z), both the local ring and its completion are UFDs, but in the apparently similar example of the localization of k[x, y, z]/(x 2 + y 3 + z 7) at the prime ideal (x, y, z) the local ring is a UFD but ...
In algebraic number theory there are examples for any other than the rational field of proper subrings of the ring of integers that are also orders. For example, in the field extension = of Gaussian rationals over , the integral closure of is the ring of Gaussian integers [] and so this is the unique maximal-order: all other orders in are ...
One defines the ring of integers of a non-archimedean local field F as the set of all elements of F with absolute value ≤ 1; this is a ring because of the strong triangle inequality. [12] If F is the completion of an algebraic number field, its ring of integers is the completion of the latter's ring of integers. The ring of integers of an ...
For example, if R is a principal ideal domain, then Pic(R) vanishes. In algebraic number theory, R will be taken to be the ring of integers, which is Dedekind and thus regular. It follows that Pic(R) is a finite group (finiteness of class number) that measures the deviation of the ring of integers from being a PID.
For example, [] is the smallest subring of C containing all the integers and ; it consists of all numbers of the form +, where m and n are arbitrary integers. Another example: Z [ 1 / 2 ] {\displaystyle \mathbf {Z} [1/2]} is the subring of Q consisting of all rational numbers whose denominator is a power of 2 .
For an example more geometrical in nature, take the ring R = {f/g : f, g polynomials in R[X] and g(0) ≠ 0}, considered as a subring of the field of rational functions R(X) in the variable X. R can be identified with the ring of all real-valued rational functions defined (i.e. finite) in a neighborhood of 0 on the real axis (with the ...