Search results
Results From The WOW.Com Content Network
The mechanism of action for the antibacterial effect of tetracyclines relies on disrupting protein translation in bacteria, thereby damaging the ability of microbes to grow and repair; however protein translation is also disrupted in eukaryotic mitochondria leading to effects that may confound experimental results.
Bacteria have a system that allows tetracyclines to be transported into the cell, whereas human cells do not. Human cells therefore are spared the effects of tetracycline on protein synthesis. [1] Tetracyclines retain an important role in medicine, although their usefulness has been reduced with the onset of antibiotic resistance. [2]
The microbial food web refers to the combined trophic interactions among microbes in aquatic environments. These microbes include viruses, bacteria, algae, heterotrophic protists (such as ciliates and flagellates). [1] In aquatic ecosystems, microbial food webs are essential because they form the basis for the cycling of nutrients and energy.
Antimicrobial use has been common practice for at least 2000 years. Ancient Egyptians and ancient Greeks used specific molds and plant extracts to treat infection. [5]In the 19th century, microbiologists such as Louis Pasteur and Jules Francois Joubert observed antagonism between some bacteria and discussed the merits of controlling these interactions in medicine. [6]
Oxytetracycline is a broad-spectrum tetracycline antibiotic, the second of the group to be discovered. Oxytetracycline works by interfering with the ability of bacteria to produce essential proteins. Without these proteins, the bacteria cannot grow, multiply and increase in numbers.
Bacteriophages, also known as phages, infect and kill bacteria primarily during lytic cycles. [ 201 ] [ 200 ] Phages insert their DNA into the bacterium, where it is transcribed and used to make new phages, after which the cell will lyse, releasing new phage that are able to infect and destroy further bacteria of the same strain. [ 200 ]
Narrow-spectrum antibiotics have low propensity to induce bacterial resistance and are less likely to disrupt the microbiome (normal microflora). [3] On the other hand, indiscriminate use of broad-spectrum antibiotics may not only induce the development of bacterial resistance and promote the emergency of multidrug-resistant organisms, but also cause off-target effects due to dysbiosis.
It works by inhibiting protein synthesis in bacteria. [3] Tetracycline was patented in 1953 [6] and was approved for prescription use in 1954. [7] [8] It is on the World Health Organization's List of Essential Medicines. [9] Tetracycline is available as a generic medication. [3] Tetracycline was originally made from bacteria of the genus ...