Search results
Results From The WOW.Com Content Network
The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation . The solutions of a quadratic equation are the zeros (or roots ) of the corresponding quadratic function, of which there can be two, one, or zero.
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
In analytic geometry, the graph of any quadratic function is a parabola in the xy-plane. Given a quadratic polynomial of the form a ( x − h ) 2 + k {\displaystyle a(x-h)^{2}+k} the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point ) of the parabola.
The equations of the circle and the other conic sections—ellipses, parabolas, and hyperbolas—are quadratic equations in two variables. Given the cosine or sine of an angle, finding the cosine or sine of the angle that is half as large involves solving a quadratic equation.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points. + + + + = where a ≠ 0.
Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...
The pair (V, Q) consisting of a finite-dimensional vector space V over K and a quadratic map Q from V to K is called a quadratic space, and B as defined here is the associated symmetric bilinear form of Q. The notion of a quadratic space is a coordinate-free version of the notion of quadratic form.