When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    4-bit adder with logical block diagram shown Decimal 4-digit ripple carry adder. FA = full adder, HA = half adder. It is possible to create a logical circuit using multiple full adders to add N-bit numbers. Each full adder inputs a , which is the of the previous adder.

  3. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.

  4. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  5. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    A Wallace multiplier is a hardware implementation of a binary multiplier, a digital circuit that multiplies two integers. It uses a selection of full and half adders (the Wallace tree or Wallace reduction ) to sum partial products in stages until two numbers are left.

  6. XOR gate - Wikipedia

    en.wikipedia.org/wiki/XOR_gate

    This is the main principle in Half Adders. A slightly larger Full Adder circuit may be chained together in order to add longer binary numbers. In certain situations, the inputs to an OR gate (for example, in a full-adder) or to an XOR gate can never be both 1's.

  7. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    For speed, shift-and-add multipliers require a fast adder (something faster than ripple-carry). [13] A "single cycle" multiplier (or "fast multiplier") is pure combinational logic. In a fast multiplier, the partial-product reduction process usually contributes the most to the delay, power, and area of the multiplier. [7]

  8. Crossbar latch - Wikipedia

    en.wikipedia.org/wiki/Crossbar_latch

    Fig. 1 illustrates the configuration of a half-adder using a crossbar tile, as taught by Snider, with the nodes identifying junctions of the crossbar tile configured as low-resistance states. By setting different logic inputs A, NOT A, B, and NOT B to different row wires this configuration produces the sum and carry outputs typical for a half ...

  9. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.