Search results
Results From The WOW.Com Content Network
After choosing a box at random and withdrawing one coin at random that happens to be a gold coin, the question is what is the probability that the other coin is gold. As in the Monty Hall problem, the intuitive answer is 1 / 2 , but the probability is actually 2 / 3 .
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
In this context, "almost surely" is a mathematical term meaning the event happens with probability 1, and the "monkey" is not an actual monkey, but a metaphor for an abstract device that produces an endless random sequence of letters and symbols. Variants of the theorem include multiple and even infinitely many typists, and the target text ...
Some people believe another scratch-off ticket strategy is to play a new game when it comes out. In reality, prizes are scattered randomly throughout the entire run of tickets.
A person is given two indistinguishable envelopes, each of which contains a sum of money. One envelope contains twice as much as the other. The person may pick one envelope and keep whatever amount it contains. They pick one envelope at random but before they open it they are given the chance to take the other envelope instead. [1]
Each of the n i occurrences of the i-th letter matches each of the remaining n i − 1 occurrences of the same letter. There are a total of N(N − 1) letter pairs in the entire text, and 1/c is the probability of a match for each pair, assuming a uniform random distribution of the characters (the "null model"; see below). Thus, this formula ...
Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.
If a systematic pattern is introduced into random sampling, it is referred to as "systematic (random) sampling". An example would be if the students in the school had numbers attached to their names ranging from 0001 to 1000, and we chose a random starting point, e.g. 0533, and then picked every 10th name thereafter to give us our sample of 100 ...