When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  3. Steiner–Lehmus theorem - Wikipedia

    en.wikipedia.org/wiki/Steiner–Lehmus_theorem

    The Steiner–Lehmus theorem, a theorem in elementary geometry, was formulated by C. L. Lehmus and subsequently proved by Jakob Steiner. It states: Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof ...

  4. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    For any triangle, and, in particular, any right triangle, there is exactly one circle containing all three vertices of the triangle. (Sketch of proof. The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points.

  5. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    The -excircle of triangle is unique. Let be a transformation defined by the composition of an inversion centered at with radius and a reflection with respect to the angle bisector on .

  6. Cevian - Wikipedia

    en.wikipedia.org/wiki/Cevian

    In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [1] [2] Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva, who proved a well-known theorem about cevians which also bears his name. [3]

  7. Erdős–Mordell inequality - Wikipedia

    en.wikipedia.org/wiki/Erdős–Mordell_inequality

    The right side is the area of triangle ABC, but on the left side, r + z is at least the height of the triangle; consequently, the left side cannot be smaller than the right side. Now reflect P on the angle bisector at C. We find that cr ≥ ay + bx for P's reflection. Similarly, bq ≥ az + cx and ap ≥ bz + cy. We solve these inequalities for ...

  8. Why the most serious charge in Luigi Mangione’s case is only ...

    www.aol.com/news/next-steps-luigi-mangione-case...

    Terrorism proof could be key to an upgraded charge in the case. If it appears, for instance, the suspect had planned the killing for a while, evidence may point to a terrorism angle that could ...

  9. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.