Search results
Results From The WOW.Com Content Network
The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non- electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
where is the chemical potential of the pure solvent and is the chemical potential of the solvent in a solution, M A is its molar mass, x A its mole fraction, R the gas constant and T the temperature in Kelvin. [1] The latter osmotic coefficient is sometimes called the rational osmotic coefficient. The values for the two definitions are ...
The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article. ... van 't Hoff factor: i
Here K f is the cryoscopic constant (equal to 1.86 °C kg/mol for the freezing point of water), i is the van 't Hoff factor, and m the molality (in mol/kg). This predicts the melting of ice by road salt. In the liquid solution, the solvent is diluted by the addition of a solute, so that fewer molecules are available to freeze.
i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution. A formula to compute the ebullioscopic constant is: [2] = R is the ideal gas constant. M is the molar mass of the solvent.
where is osmotic pressure, i is the dimensionless van 't Hoff index, c is the molar concentration of solute, R is the ideal gas constant, and T is the absolute temperature (usually in kelvins). This formula applies when the solute concentration is sufficiently low that the solution can be treated as an ideal solution.
i is the van ‘t Hoff factor, the number of particles the solute splits into or forms when dissolved; b is the molality of the solution. Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek.