When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear equation over a ring - Wikipedia

    en.wikipedia.org/wiki/Linear_equation_over_a_ring

    A field is an effective ring as soon one has algorithms for addition, subtraction, multiplication, and computation of multiplicative inverses. In fact, solving the submodule membership problem is what is commonly called solving the system, and solving the syzygy problem is the computation of the null space of the matrix of a system of linear ...

  3. Parker–Sochacki method - Wikipedia

    en.wikipedia.org/wiki/Parker–Sochacki_method

    The method requires only addition, subtraction, and multiplication, making it very convenient for high-speed computation. (The only divisions are inverses of small integers, which can be precomputed.) Use of a high order—calculating many coefficients of the power series—is convenient.

  4. Inverse Symbolic Calculator - Wikipedia

    en.wikipedia.org/wiki/Inverse_Symbolic_Calculator

    A user will input a number and the Calculator will use an algorithm to search for and calculate closed-form expressions or suitable functions that have roots near this number. Hence, the calculator is of great importance for those working in numerical areas of experimental mathematics. The ISC contains 54 million mathematical constants.

  5. TK Solver - Wikipedia

    en.wikipedia.org/wiki/TK_Solver

    TK Solver has three ways of solving systems of equations. The "direct solver" solves a system algebraically by the principle of consecutive substitution. When multiple rules contain multiple unknowns, the program can trigger an iterative solver which uses the Newton–Raphson algorithm to successively approximate based on initial guesses for ...

  6. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  7. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    When solving systems of equations, b is usually treated as a vector with a length equal to the height of matrix A. In matrix inversion however, instead of vector b , we have matrix B , where B is an n -by- p matrix, so that we are trying to find a matrix X (also a n -by- p matrix):

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.

  9. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).