Search results
Results From The WOW.Com Content Network
Before the models of a non-Euclidean plane were presented by Beltrami, Klein, and Poincaré, Euclidean geometry stood unchallenged as the mathematical model of space. Furthermore, since the substance of the subject in synthetic geometry was a chief exhibit of rationality, the Euclidean point of view represented absolute authority.
Euclidean space was introduced by ancient Greeks as an abstraction of our physical space. Their great innovation, appearing in Euclid's Elements was to build and prove all geometry by starting from a few very basic properties, which are abstracted from the physical world, and cannot be mathematically proved because of the lack of more basic tools.
First, a 3-dim Euclidean space is a special (not general) case of a Euclidean space. Second, a topology of a Euclidean space is a special case of topology (for instance, it must be non-compact, and connected, etc). We denote surjective transitions by a two-headed arrow, "↠" rather than "→".
This shows that non-Euclidean geometries, which had been introduced a few years earlier for showing that the parallel postulate cannot be proved, are also useful for describing the physical world. However, the three-dimensional "space part" of the Minkowski space remains the space of Euclidean geometry. This is not the case with general ...
In the 19th and 20th centuries mathematicians began to examine geometries that are non-Euclidean, in which space is conceived as curved, rather than flat, as in the Euclidean space. According to Albert Einstein's theory of general relativity, space around gravitational fields deviates from Euclidean space. [3]
The converse may fail for a non-Euclidean space; e.g. the real line equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but not totally bounded.
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
The natural topology of Euclidean space implies a topology for the Euclidean group E(n). Namely, a sequence f i of isometries of E n {\displaystyle \mathbb {E} ^{n}} ( i ∈ N {\displaystyle i\in \mathbb {N} } ) is defined to converge if and only if, for any point p of E n {\displaystyle \mathbb {E} ^{n}} , the sequence of points p i converges.