Search results
Results From The WOW.Com Content Network
The variable y is directly proportional to the variable x with proportionality constant ~0.6. The variable y is inversely proportional to the variable x with proportionality constant 1. In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio.
Similar figures. In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other.More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection.
For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant. The law is named after Amedeo Avogadro who, in 1812, [ 2 ] [ 3 ] hypothesized that two given samples of an ideal gas, of the same volume and at the same temperature and pressure, contain the same ...
It is essential to know which category a measurement belongs to when using decibels (dB) for comparing the levels of such quantities. A change of one bel in the level corresponds to a 10× change in power, so when comparing power quantities x and y, the difference is defined to be 10×log 10 (y/x) decibel.
In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels (same shape, different sizes) with the same boundary conditions (e.g., no-slip, center-line velocity) and the same Reynolds and Womersley numbers, then the fluid flows will be identical.
Perhaps the greatest success of the kinetic theory of gases, as it came to be called, was the discovery that for gases, the temperature as measured on the Kelvin (absolute) temperature scale is directly proportional to the average kinetic energy of the gas molecules. Graham's law for diffusion could thus be understood as a consequence of the ...
The quantity grows at a rate directly proportional to its present size. For example, when it is 3 times as big as it is now, it will be growing 3 times as fast as it is now. In more technical language, its instantaneous rate of change (that is, the derivative) of a quantity with respect to an independent variable is proportional to the quantity ...
In mathematical statistics, the concept has been formalized as the Zipfian distribution: A family of related discrete probability distributions whose rank-frequency distribution is an inverse power law relation. They are related to Benford's law and the Pareto distribution. Some sets of time-dependent empirical data deviate somewhat from Zipf's ...