Search results
Results From The WOW.Com Content Network
For the chi-squared distribution, only the positive integer numbers of degrees of freedom (circles) are meaningful. By the central limit theorem, because the chi-squared distribution is the sum of independent random variables with finite mean and variance, it converges to a normal distribution for large .
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
Chi-squared distribution, showing χ 2 on the x-axis and p-value (right tail probability) on the y-axis. A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large.
The chi-squared test, when used with the standard approximation that a chi-squared distribution is applicable, has the following assumptions: [7] Simple random sample The sample data is a random sampling from a fixed distribution or population where every collection of members of the population of the given sample size has an equal probability ...
From this representation, the noncentral chi-squared distribution is seen to be a Poisson-weighted mixture of central chi-squared distributions. Suppose that a random variable J has a Poisson distribution with mean λ / 2 {\displaystyle \lambda /2} , and the conditional distribution of Z given J = i is chi-squared with k + 2 i degrees of freedom.
The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one. For example, for a 3-parameter Weibull distribution, c = 4.
In probability theory and statistics, the generalized chi-squared distribution (or generalized chi-square distribution) is the distribution of a quadratic form of a multinormal variable (normal vector), or a linear combination of different normal variables and squares of normal variables.
If the data points are normally distributed with mean 0 and variance , then the residual sum of squares has a scaled chi-squared distribution (scaled by the factor ), with n − 1 degrees of freedom. The degrees-of-freedom, here a parameter of the distribution, can still be interpreted as the dimension of an underlying vector subspace.