Search results
Results From The WOW.Com Content Network
The optimal algorithm choice depends on the context (such as the relative cost of the multiplication and the number of times a given exponent is re-used). [2] The problem of finding the shortest addition chain cannot be solved by dynamic programming, because it does not satisfy the assumption of optimal substructure. That is, it is not ...
This algorithm calculates the value of x n after expanding the exponent in base 2 k. It was first proposed by Brauer in 1939. In the algorithm below we make use of the following function f(0) = (k, 0) and f(m) = (s, u), where m = u·2 s with u odd. Algorithm: Input
Kummer's theorem states that the number of carries involved in adding two numbers in base is equal to the exponent of the highest power of dividing a certain binomial coefficient. When several random numbers of many digits are added, the statistics of the carry digits bears an unexpected connection with Eulerian numbers and the statistics of ...
A Brauer chain or star addition chain is an addition chain in which each of the sums used to calculate its numbers uses the immediately previous number. A Brauer number is a number for which a Brauer chain is optimal. [5] Brauer proved that l * (2 n −1) ≤ n − 1 + l * (n) where is the length of the shortest star chain. [7]
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
For example, in the method addition with carries, the two numbers are written one above the other. Starting from the rightmost digit, each pair of digits is added together. The rightmost digit of the sum is written below them. If the sum is a two-digit number then the leftmost digit, called the "carry", is added to the next pair of digits to ...
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
The running time of this algorithm is O(log exponent). When working with large values of exponent, this offers a substantial speed benefit over the previous two algorithms, whose time is O(exponent). For example, if the exponent was 2 20 = 1048576, this algorithm would have 20 steps instead of 1048576 steps.