Search results
Results From The WOW.Com Content Network
Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C 2 H 3 O 2) 4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis. [2]
The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate (Malaprade reaction) but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as ...
The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH) 2) by reaction with water. Thus, the oxidation of a primary alcohol at the aldehyde level without further oxidation to the carboxylic acid is possible by performing the reaction ...
Sodium hypochlorite, [4] lead tetraacetate, [5] N-bromosuccinimide, and (bis(trifluoroacetoxy)iodo)benzene [6] can effect a Hofmann rearrangement. The intermediate isocyanate can be trapped with various nucleophiles to form stable carbamates or other products rather than undergoing decarboxylation.
Organolead compounds can be derived from Grignard reagents and lead chloride. For example, methylmagnesium chloride reacts with lead chloride to tetramethyllead, a water-clear liquid with boiling point 110 °C and density 1.995 g/cm 3. Reaction of a lead(II) source with sodium cyclopentadienide gives the lead metallocene, plumbocene.
Glycol cleavage is a specific type of organic chemistry oxidation. The carbon–carbon bond in a vicinal diol (glycol) is cleaved and instead the two oxygen atoms become double-bonded to their respective carbon atoms. Depending on the substitution pattern in the diol, these carbonyls will be ketones and/or aldehydes. [1]
Lead(II) oxide is also soluble in alkali hydroxide solutions to form the corresponding plumbite salt. [2] PbO + 2 OH − + H 2 O → Pb(OH) 2− 4. Chlorination of plumbite solutions causes the formation of lead's +4 oxidation state. Pb(OH) 2− 4 + Cl 2 → PbO 2 + 2 Cl − + 2 H 2 O. Lead dioxide is representative of the +4 oxidation state ...
The unusual alkyl nitrite starting material of the Barton reaction is prepared by attack of an alcohol on a nitrosylium cation generated in situ by dehydration of doubly protonated nitrous acid. [6] This series of steps is mechanistically identical to the first half of the mechanism formation of the more well-known aryl and alkyl diazonium salts.