Search results
Results From The WOW.Com Content Network
Almost any type of lung tumor or lung cancer can compress the alveoli and reduce gas exchange capacity. In some cases the tumor will fill the alveoli. [33] Cavitary pneumonia is a process in which the alveoli are destroyed and produce a cavity. As the alveoli are destroyed, the surface area for gas exchange to occur becomes reduced.
Alveoli are the spherical outcroppings of the respiratory bronchioles. Pulmonary surfactant is a surface-active complex of phospholipids and proteins formed by type II alveolar cells . [ 1 ] The proteins and lipids that make up the surfactant have both hydrophilic and hydrophobic regions.
The tendency for the alveoli to collapse is therefore almost the same at the end of exhalation as at the end of inhalation. Thirdly, the surface tension of the curved watery layer lining the alveoli tends to draw water from the lung tissues into the alveoli. Surfactant reduces this danger to negligible levels, and keeps the alveoli dry. [6] [37]
The alveoli are tiny air sacs in the lungs where gas exchange takes place. The mean number of alveoli in a human lung is 480 million. [11] When the diaphragm contracts, a negative pressure is generated in the thorax and air rushes in to fill the cavity. When that happens, these sacs fill with air, making the lung expand.
Elastin is more concentrated in areas of high stress such as the openings of the alveoli, and alveolar junctions. [19] The connective tissue links all the alveoli to form the lung parenchyma which has a sponge-like appearance. The alveoli have interconnecting air passages in their walls known as the pores of Kohn. [20]
The process of breathing does not fill the alveoli with atmospheric air during each inhalation (about 350 ml per breath), but the inhaled air is carefully diluted and thoroughly mixed with a large volume of gas (about 2.5 liters in adult humans) known as the functional residual capacity which remains in the lungs after each exhalation, and ...
Dead space is the volume of air that is inhaled that does not take part in the gas exchange, because it either remains in the conducting airways or reaches alveoli that are not perfused or poorly perfused. It means that not all the air in each breath is available for the exchange of oxygen and carbon dioxide.
Therefore, the ventilation-perfusion ratio represents the volume of gas that enters the alveoli compared to the volume of blood that enters the alveoli per minute. The ideal V/Q ratio is 1, the most efficient state of pulmonary function when the amount of oxygen entering the lungs equals the amount of oxygen delivered to the body.