When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.

  3. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    There is nothing magical about a sample size of 1 000, it's just a nice round number that is well within the range where an exact test, chi-square test, and G–test will give almost identical p values. Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [2]

  4. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods:

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Again, the optimum beta coefficients may be found by maximizing the log-likelihood function generally using numerical methods. A possible method of solution is to set the derivatives of the log-likelihood with respect to each beta coefficient equal to zero and solve for the beta coefficients:

  6. Neyman–Pearson lemma - Wikipedia

    en.wikipedia.org/wiki/Neyman–Pearson_lemma

    In practice, the likelihood ratio is often used directly to construct tests — see likelihood-ratio test.However it can also be used to suggest particular test-statistics that might be of interest or to suggest simplified tests — for this, one considers algebraic manipulation of the ratio to see if there are key statistics in it related to the size of the ratio (i.e. whether a large ...

  7. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Alternatively, post-test probability can be calculated directly from the pre-test probability and the likelihood ratio using the equation: P' = P0 × LR/(1 − P0 + P0×LR), where P0 is the pre-test probability, P' is the post-test probability, and LR is the likelihood ratio. This formula can be calculated algebraically by combining the steps ...

  8. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    In log-linear analysis there is no clear distinction between what variables are the independent or dependent variables. The variables are treated the same. However, often the theoretical background of the variables will lead the variables to be interpreted as either the independent or dependent variables.

  9. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.