When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.

  3. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.

  4. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods:

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The image represents an outline of what an odds ratio looks like in writing, through a template in addition to the test score example in the "Example" section of the contents. In simple terms, if we hypothetically get an odds ratio of 2 to 1, we can say...

  6. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Alternatively, post-test probability can be calculated directly from the pre-test probability and the likelihood ratio using the equation: P' = P0 × LR/(1 − P0 + P0×LR), where P0 is the pre-test probability, P' is the post-test probability, and LR is the likelihood ratio. This formula can be calculated algebraically by combining the steps ...

  7. Neyman–Pearson lemma - Wikipedia

    en.wikipedia.org/wiki/Neyman–Pearson_lemma

    In practice, the likelihood ratio is often used directly to construct tests — see likelihood-ratio test.However it can also be used to suggest particular test-statistics that might be of interest or to suggest simplified tests — for this, one considers algebraic manipulation of the ratio to see if there are key statistics in it related to the size of the ratio (i.e. whether a large ...

  8. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    In log-linear analysis there is no clear distinction between what variables are the independent or dependent variables. The variables are treated the same. However, often the theoretical background of the variables will lead the variables to be interpreted as either the independent or dependent variables.

  9. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Therefore, it is regarded as the log-EM algorithm. The use of the log likelihood can be generalized to that of the α-log likelihood ratio. Then, the α-log likelihood ratio of the observed data can be exactly expressed as equality by using the Q-function of the α-log likelihood ratio and the α-divergence.