Search results
Results From The WOW.Com Content Network
A graphical representation of the expansion of the universe from the Big Bang to the present day, with the inflationary epoch represented as the dramatic expansion seen on the left. This visualization shows only a section of the universe; the empty space outside the diagram should not be taken to represent empty space outside the universe ...
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] The concept of an expanding universe was scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.
In 1927, the Belgian physicist Georges Lemaitre proposed an expanding model for the universe to explain the observed redshifts of spiral nebulae, and calculated the Hubble law. He based his theory on the work of Einstein and De Sitter, and independently derived Friedmann's equations for an expanding universe. Also, the red shifts themselves ...
Fresh corroboration of the perplexing observation that the universe is expanding more rapidly than expected has scientists pondering the cause - perhaps some unknown factor involving the ...
According to the theory of cosmic inflation, the very early universe underwent a period of very rapid, quasi-exponential expansion.While the time-scale for this period of expansion was far shorter than that of the existing expansion, this was a period of accelerated expansion with some similarities to the current epoch.
As we continue the search for evidence of dark energy, one scientist proposes a radical new idea about what's going on in the cosmos.
Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory. According to eternal inflation, the inflationary phase of the universe's expansion lasts forever throughout most of the universe. Because the regions expand exponentially rapidly, most of the volume of the universe ...
Given our assumed half-life of the proton, nucleons (protons and bound neutrons) will have undergone roughly 1,000 half-lives by the time the universe is 10 43 years old. This means that there will be roughly 0.5 1,000 (approximately 10 −301 ) as many nucleons; as there are an estimated 10 80 protons currently in the universe, [ 41 ] none ...