Search results
Results From The WOW.Com Content Network
Geometric representation (Argand diagram) of and its conjugate ¯ in the complex plane.The complex conjugate is found by reflecting across the real axis.. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.
In the general linear group, similarity is therefore the same as conjugacy, and similar matrices are also called conjugate; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than similarity, since it requires that P be chosen to lie in H.
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
where M * denotes the conjugate transpose of M. In this case, the determinant may not be 1, but will have absolute value 1. In the 2×2 case (n=1), M will be the product of a real symplectic matrix and a complex number of absolute value 1. Other authors [9] retain the definition for complex matrices and call matrices satisfying conjugate ...
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
and : are continuous functions on topological spaces, and . being topologically semiconjugate to means, by definition, that is a surjection such that =.. and being topologically conjugate means, by definition, that they are topologically semiconjugate and is furthermore injective, then bijective, and its inverse is continuous too; i.e. is a homeomorphism; further, is termed a topological ...
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger ( † ), so the equation above is written
For example, the real numbers form the real line, which is pictured as the horizontal axis of the complex plane, while real multiples of are the vertical axis. A complex number can also be defined by its geometric polar coordinates : the radius is called the absolute value of the complex number, while the angle from the positive real axis is ...